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bstract

The authors recently published works in which the use of two novel equations for modeling the dispersive kinetics observed in various solid-state
onversions are described. These equations are based on the assumptions of a ‘Maxwell–Boltzmann (M–B)-like’ distribution of activation energies
nd a first-order rate law. In the present work, it is shown that it may be possible to expand the approach to include mechanisms other than
rst-order, i.e. some of those commonly encountered in the field of thermal analysis, thus obtaining ‘dispersive versions’ of these kinetic models.
he application of these dispersive kinetic models to the slightly sigmoidal, isothermal conversion–time (x–t) data of Rodante and co-workers

or the degradation of the antibiotic, oxacillin, is described. This is done in an effort to test the limitations of the proposed dispersive models in
escribing kinetic data which is not clearly sigmoidal (i.e. as shown in previous works). Finally, it is demonstrated that, using graphical analysis,
he typically sigmoidal x–t plots of first-order dispersive processes are the direct result of (asymmetric) activation energy distributions that are

ither ‘∩-shaped’ (for heterogeneous conversions) or ‘∪-shaped’ (for homogeneous conversions) in appearance, i.e. when the activation energy is
lotted as a function of conversion. This finding lends support to the founding hypothesis of the authors’ approach for modeling dispersive kinetic
rocesses: the existence of ‘M–B-like’ distributions of activation energies.

2006 Elsevier B.V. All rights reserved.
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. Introduction

While several common kinetic models exist in the litera-
ure for solid-state applications [1–4], their general application
s often limited only to certain, simple phase transformations.
hese models are summarized in the first few columns of
able 1. For more complex transformations, generally those
hich exhibit multiple activation energies over the course of

he conversion (as observed using ‘model-free’ isoconversional
inetic techniques [5–7]), these kinetic models, used either indi-
idually or in combination, often fail to adequately describe the
ata; a specific example will be discussed later in this work.

dditionally, the traditional kinetic models are often plagued by

actors including poor fits to experimental data, the inability to
ccurately estimate the start time of conversion, the empirical
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mal decomposition

ature of the (sometimes many) fit parameters, etc. Alterna-
ively, the authors have recently discussed the development
f two novel, simple, ‘dispersive kinetic models’ which were
hown to fit/describe well the experimental data for various
olid-state conversions, including a solvent-mediated polymor-
hic transformation and a thermal decomposition, using only
wo fit parameters (each of which has physical units) [8].

Dispersive kinetics are observed in chemical systems exhibit-
ng ‘renewing environments’, i.e. typically those in which

olecular dynamics impact the measured rate of conversion
10–12]. The authors believe that many solid-state conversions
ay fall into this category (e.g. nucleation/de-nucleation and

ucleation-and-growth, rate-limited processes, in which kinetic
nergy quantization may be important in affecting the conver-
ion rate e.g. [9]). Dispersive kinetics are often explained by

he existence of a distribution of activation energies. This distri-
ution of activation energies, in turn, relates a time-dependent
ate constant for the conversion, which can impact the observed
inetic behavior [8–12].

mailto:skrdla@earthlink.net
dx.doi.org/10.1016/j.tca.2006.11.004
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The authors assume that the distributions of activation ener-
ies for various dispersive processes take the general functional
orm/shape of the Maxwell–Boltzmann (M–B) kinetic energy
istribution due to the role of molecular dynamics in affecting the
bserved reaction kinetics; the distribution is ‘concave-down’
or heterogeneous systems (i.e. those producing acceleratory,
igmoid conversion versus time, x–t, curves—which are charac-
erized by slower rates earlier in the conversion than towards the
nd) and ‘concave-up’ (i.e. inverted) for homogeneous systems
i.e. those producing deceleratory, sigmoid x–t curves—which
re characterized by faster rates earlier in the conversion, post-
nduction period, than towards the end) [8,9]. [An example of
dispersive homogeneous solid-state conversion is the thermal
ecomposition of silver permanganate e.g. [8]; it is a process
hich yields products from a single, homogeneous reagent.
eterogeneous solid-state conversions, on the other hand, typi-

ally involve polymorphic transformations and crystallizations,
.e. systems which involve the formation a ‘product’ con-
ensed phase from a homogeneous/dissolved ‘reagent’ phase.]
n either case, these activation energy distributions ultimately
efine (mathematically) a time-dependent rate constant, which
he authors believe can be approximated by a specific func-
ional form, as will be discussed later. When the time-dependent
ate constant is coupled with an assumed first-order mechanism
or the conversion, the dispersive kinetic model equations of
he authors’ previous works are obtained (i.e. one for treat-
ng homogeneous conversions and one for use in heterogeneous
pplications [8,9]).

In this work, it is demonstrated that it may be possible to con-
ert some of the traditional kinetic models shown in Table 1 into
orresponding ‘dispersive kinetic models’, using the approach
escribed above. Additionally, the application of these various
ispersive models to the isothermal decomposition of the antibi-
tic, oxacillin, originally investigated by Rodante et al. [14–16],
s shown. This particular conversion is of interest to the authors
or three main reasons: (1) the data is ‘complex’ and it cannot be
atisfactorily fit/interpreted using most of the traditional kinetic
odels, even in combination, (2) the x–t data is ‘less sigmoidal’

n appearance than any other data the authors have attempted to
odel with their dispersive kinetic equations previously (thus,

t may provide a good test of the potential limitations of the
roposed dispersive kinetic models) and (3) the solid-state ther-
al decomposition of oxacillin, unlike other compounds the

uthors have previously investigated [8,9], appears to proceed
ia a heterogeneous mechanism rather than a homogeneous one
from visually examining the shape of the x–t trends). Finally,
y utilizing some recent results [9], the authors attempt to show,
ia graphical analysis, that the dispersive model equation for
rst-order heterogeneous processes (i.e. the model which is ulti-
ately used to treat the oxacillin data) predicts a ‘M–B-like’

i.e. asymmetric, ‘∩-shaped’) distribution of activation energies,
s a function of the extent of conversion. This is an impor-
ant goal because such a finding would lend support to the

undamental assumption (i.e. in the derivation of the various dis-
ersive kinetic model equations presented in this work) of the
xistence of such activation energy distributions in dispersive
onversions.
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are already based on molecular motion (but that which is not
quantized as per the authors’ dispersive approach), it may hold
true that the only physically meaningful dispersive kinetic varia-
tions are those of the F-series models. Thus, only these dispersive
models are shown in the table. Note that, to-date, the authors have
6 P.J. Skrdla, R.T. Robertson / Th

. Results and discussion

.1. Dispersive model equations for condensed phase
inetics

The differential form of the standard kinetic models in Table 1
s defined by the function, f(x), where:

(x) =
(

1

k

) (
dx

dt

)
(1)

nd dx/dt is the rate of conversion, x the degree of conversion
i.e. the amount of product formed at time t) and k is the rate
onstant for the process (as per the traditional Arrhenius defini-
ion). Note that the definitions of ‘x’ and ‘1 − x’, for the product
nd reagent fractions, respectively, are reversed in the authors’
revious works [8,9,13]. The integrated forms of these reaction
odels, denoted g(x), are also provided in the table. For these

ariants, g(x) is defined as below:

(x) = kt (2)

The first six models (the A-series) are typical nucleation mod-
ls, the P-series are geometrical contracting models, the D-series
epresent diffusion models and the last four (F-series) are com-
on reaction order models [3]. Focusing on the integral forms

f these models (i.e. mainly the F-series, as will be discussed
ater) for the purposes of this work, the equations can be con-
erted to corresponding ‘dispersive models’, using the general
xpression:

(x) = tn
∫

k(t) dt (3)

hich introduces a time-dependent rate constant, k(t), and a
eaction dimension, n, to the conversion (note: the integra-
ion limits are 0 and t). Typically, n = 0 for heterogeneous
onversions where the activated state is dissolved (e.g. solvent-
ediated polymorphic transformations, see Ref. [8]), but n = 2

or homogeneous solid-state conversions, such as the thermal
ecomposition of AgMnO4 [8], where the rate-limiting mech-
nism may involve two-dimensional de-nucleation from flat
rystal surfaces e.g. [14]. Considering only isothermal condi-
ions, we have shown elsewhere that for dispersive processes the
ate constant may be approximated using a Gaussian function:

(t) = α exp(±βt2) (4)

ased on the initial assumption of a M–B distribution of acti-
ation energies [8]. In Eq. (4), α and β are assumed to be
ndependent constants; the sign of β indicates whether the reac-
ion is generally acceleratory (+) or deceleratory (−) in nature
the former conversions typically include heterogeneous phase
hanges while the latter are homogeneous solid-state reactions)
8]. Note that both α and β, which translate directly from Eq.
4) to the proposed dispersive kinetic models in Table 1 (dis-

ussed more below), each have units in the time domain. Thus,
hey have more physical significance than the typical empirical
fit parameters’ of traditional model equations [8,9]. [Essen-
ially, these parameters are akin to traditional rate constants:

o
w
s
k
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n previous works, it was discussed that α is a kind of first-
rder, time-independent rate constant while β describes the
ime-dependence of the overall rate constant, k(t), for the conver-
ion (i.e. as typically observed in sigmoidal, dispersive kinetic
–t trends). Given that one rate constant is normally sufficient to
escribe a simple, first-order exponential (F1), it may be realistic
o expect that the simplest kinetic model that can describe sig-

oidal x–t trends should contain at least two such parameters.]
sing Eq. (4) in Eq. (3) and integrating, one obtains:

(x) =
{[

απ1/2t2

2β1/2

]
[erf(β1/2t)]

}
for − β and n = 2 (5)

(x) =
{[

απ1/2

2β1/2

]
[erfi(β1/2t)]

}
for + β and n = 0 (6)

Unfortunately, these results are not entirely satisfying for
inetic modeling applications since the error function (denoted
erf’; erf(β1/2t) ≡ 2π−1/2β1/2

∫
exp(−βt2) dt, where the inte-

ration limits are 0 and t) requires numerical solution and such
apability may not be readily available in some laboratories; fur-
hermore, Eq. (6) uses an imaginary error function, denoted as
erfi’. Fortunately, using an approximation for the error function
ntegral [13], one can obtain the following expressions (which
he authors believe are valid down to low integer values of t, the
nits of which can be selected quite arbitrarily in most kinetic
odeling [9]):

(x) =
[−αt

2β

]
[exp(−βt2) − 1] when − β and n = 2 (7)

(x) =
[

α

2βt

]
[exp(βt2) − 1] when + β and n = 0 (8)

hus, for the various integral models, g(x), listed in Table 1
hich describe different conversion mechanisms, one can the-
retically obtain corresponding dispersive kinetic variations of
hese models by using either Eq. (7) or Eq. (8), depending on
hether the conversion is homogeneous/deceleratory or hetero-
eneous/acceleratory in nature (respectively). It is highlighted
ere, however, that it may not be meaningful to obtain ‘disper-
ive’ versions of the so-called Avrami–Erofe’ev or Power Law
quations, for example, using the authors’ procedure, since these
quations have already been shown to be obtainable directly
rom the dispersive kinetics approach of Plonka [10–12]. Addi-
ionally, since the ‘geometric’ and ‘diffusion’ models in Table 1
nly utilized the first-order reaction model, labeled F1 in Table 1,
ith either Eq. (7) or (8), for applications ranging from solid-

tate phase changes [8,9] to femtosecond gas phase reaction
inetics [13].
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.2. Isothermal decomposition of oxacillin

Rodante et al. recently described both the simple and complex
hermal decompositions of some pharmaceutical compounds;

ost interesting to the authors are the decompositions of the
ntibiotics these workers investigated as these systems exhibit
he most complex kinetic behavior [15–17]. For example,
odante and co-workers found that the isothermal ‘conversion
ersus reduced time’ plots for oxacillin yielded consistent activa-
ion energies and Arrhenius frequency factors for the majority of
he kinetic models in Table 1, despite the relatively poor data fits
17]. However, as a direct result of the poor data fits, the various
inetic treatments were not able to provide reliable parameters
hat could be used to estimate the half-life of decomposition.
n Ref. [15], it is stated that “. . . kinetic calculations are not
ble to determine the decomposition mechanisms for the stud-
ed compounds. The failure of the model-fitting method to define

ulti-step decomposition processes . . .” was found to be a key
imitation in that work. [As an aside, Rodante and co-workers
lso suggest that non-isothermal approaches can better reveal the
rue complexity of the data because a wider temperature range
an be more readily studied, however, this is mainly an experi-
ental limitation which will not be pursued in the present work.]

n Ref. [16], Rodante et al. attempted to use a ‘superimposed
eries’ (i.e. a linear combination in time) of models to better
escribe the complex kinetic trends. However, this approach was
nly able to support the R3 and F3 models for what these workers
elieved to be the second and fourth steps of the decomposition,
espectively; the other two proposed steps in the decomposition
ould not be adequately described by any of the other models.
The data from Ref [15], i.e. for the isothermal decomposition
f oxacillin at different temperatures as characterized by TG
see Fig. 1), was modeled using the various dispersive kinetic
quations discussed earlier (see Table 1). It was found that the

ig. 1. Kinetic data for the isothermal conversion of oxacillin at various
emperatures, taken from Ref. [15]. The data fits were performed using Eq.
9) in the text for the 225 ◦C (�), 230 ◦C (�) and 240 ◦C (©) data; the
50 ◦C data (�) was not fit (see text for details). The regression fits are as
ollows: R2 = 0.995, αo = (6.2 ± 4.6) × 102 min, β = (6.7 ± 4.9) × 10−5 min−2

�); R2 = 0.997, αo = (3.2 ± 1.4) × 102 min, β = (2.1 ± 0.9) × 10−4 min−2 (�);
2 = 0.990, αo = (1.3 ± 0.9) × 102 min, β = (1.1 ± 0.7) × 10−3 min−2 (©). The
rrors represent one standard deviation.
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rst-order dispersive model for heterogeneous phase transfor-
ations, derived using model F1 in Eq. (8) – shown below as
q. (9) – was the simplest dispersive model that was able to
escribe the data collected at 225, 230 and 240 ◦C, with the best
recision:

= 1 − exp

{[−αo

t

]
[exp(βt2) − 1]

}
, αo ≡ α

2β
(9)

he data fits using Eq. (9) were generally found to be better
han those of the non-dispersive kinetic models (by comparison
ith the plots in Ref. [15]); of note, while the traditional F1
odel appeared to provide reasonably good fits to the curves

n Fig. 1 (not shown), it was found to be unable to describe
ome of the slightly sigmoidal x–t curvature observed in the
ata. Unfortunately, the data collected at 250 ◦C was not able to
e fit satisfactorily with Eq. (9), likely due, at least in part, to the
imited number of data points collected early in the conversion
hich poorly defines the curvature of this plot. It is also impor-

ant to point out that the first-order, dispersive kinetic model for
omogeneous phase transformations (i.e. which can be derived
y using model F1 in Eq. (7); see Table 1) was not as successful
s Eq. (9) in fitting the data in Fig. 1.

In previous work [9], it was shown that a plot of ln(α/2)
ersus 1/T can yield an estimate for the ‘global activation energy’
i.e. the potential energy component of the activation energy),

o
a , and the Arrhenius frequency factor, A. For heterogeneous

onversions, such as the thermal decomposition of oxacillin,
he change in the activation energy, Ea(t), as a function of the
onversion time, t, may be related by the equation [9]:

a(t) = Eo
a − RTβt2 (10)

here R is the gas constant and the other parameters are defined
s before (note that β, like any traditional rate constant, is a func-
ion of T although it is not shown explicitly in the above equation;
ee Refs. [8,9] for a physical interpretation of the ‘fit parame-
ers’ α and β, as they are currently understood by the authors).

hile E0
a represents the (time-independent) potential energy

omponent of the activation energy, the term RTβt2 describes the
time/conversion-dependent) kinetic energy component of the
ctivation energy. Thus, analogously to the Arrhenius equation,
ne may write [9]:

n
(α

2

)
= ln

(
A

2

)
− Eo

a

RT
(11)

rom Eq. (11), the slope of a plot of ln(α/2) versus 1/T is
iven by −Eo

a/R and the vertical axis intercept yields a value
or ln(A/2). From Fig. 2, the global activation energy was esti-
ated at 173 ± 9 kJ/mol and the frequency factor obtained was
1022 s−1. While the global activation energy is consistent with

he activation energies presented in Ref. [15], the frequency fac-
or is about six orders of magnitude higher than those reported
n the reference. At present, the authors are not sure of the rea-

on for this difference in the magnitude of A, other than the fact
hat it is related to the difference between the rate parameters
α and β) extracted using the proposed dispersive kinetic treat-
ent of the data and the traditional rate constants (k) determined
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Fig. 2. Plot of ln(α/2) vs. 1/T for the solid-state decomposition of oxacillin using
the regression fit data presented in the caption of Fig. 1, for temperatures in the
r
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ange 225–240 ◦C. From the linear regression fit of the plot, R2 = 0.997, verti-
al axis intercept = (5.11 ± 0.22) × 101 and slope = −(2.09 ± 0.11) × 104 K. The
rrors represent one standard deviation.

y Rodante and co-workers. Note that after 40 min of reaction
ime (i.e. at ∼80% conversion), at 225 ◦C, Eq. (10) predicts
hat the activation energy for the decomposition decreases by

0.5 kJ/mol. This slight decrease in the activation energy bar-
ier with increasing conversion/time produces the acceleratory
rend in the weakly sigmoidal x–t plot of this heterogeneous con-
ersion. Due to the fact that the variation in the activation energy
s quite small (relative to the magnitude of Eo

a ), the plot is only
lightly sigmoidal; the converse is also true. Note that if one
eglects any dispersion in Ea(t), Ea becomes single-valued (as
er the Arrhenius kinetic description) and the dispersive kinetic
odel, Eq. (9), reduces to the F1 model (which, as stated earlier,

lso does a reasonable job at fitting the data).
While most solid-state decompositions that the authors have

odeled to-date have been homogeneous in nature, from the
odeling efforts presented here it is believed that the ther-
al decomposition of oxacillin (i.e. the rate-determining step,

.d.s., of this process) is a heterogeneous process. This idea may
e supported by the exothermic decomposition peak (onset at
31 ◦C, observed by DSC) which is accompanied by a 59%
ass loss (by TG) due to the formation of volatile product(s)

15]. Essentially, the authors believe that, for this decomposition,
he r.d.s. involves the nucleation-and-growth of product species
rom ‘dimensionless’ (i.e. ‘dissolved’) starting materials. Simi-
arly, from a survey of the literature, the thermal decomposition
f TNT also appears to be a heterogeneous dispersive kinetic
rocess (producing acceleratory x–t sigmoids); this may be due
o the nucleation-and-growth of reaction centers in the liquid
ortion of the confined sample [18].

.3. Eq. (9) predicts an asymmetric, concave-down
istribution of activation energies for heterogeneous

ondensed phase conversions

Workers in the field of thermal analysis, such as those using
soconversional kinetic methods e.g. [5–7] to investigate various

x
i
(
t

himica Acta 453 (2007) 14–20

olid-state processes, are often interested in how the activation
nergy changes with the extent of conversion, x, rather than with
ime, t. That is because isoconversional methods typically yield
alues of Ea as a function of x, not t. While the idea that the
ctivation energy may change during the course of conversion
as been a topic of much controversy in the literature in the
ecent past e.g. [19], in the authors’ view this idea is supported
y both experimental data (as will be discussed below) and by
he dispersive kinetics literature [10–12]. Recently, Vyazovkin
as clarified that the observation of multiple activation energies
uring isoconversional analyses are not necessarily due to exper-
mental errors or errors associated with the data treatment(s), but,
ather, they may be the result of multiple conversion mechanisms
or a given phase transformation [1]. The authors would like to
xpand on this idea to include conversions that predominantly
ccur via a single mechanism, i.e. for elementary conversions
i.e. R → P) or those that react with a single r.d.s. over the course
f the conversion, but which are dispersive in nature.

From Eq. (9), one can see that x is a non-linear function of
; thus, an analytical solution for t(x) is non-trivial. However,
ne can use the ‘exact solution’ for x, i.e. Eq. (6) (assuming
(x) = −ln(1 − x)), directly to yield:

= β−1/2 erfi−1[−2π−1/2α−1β1/2 ln(1 − x)] (12)

here ‘erfi−1’ denotes an inverse imaginary error function.
sing Eq. (12) in Eq. (10), one finds that:

a(x) = Eo
a − RT {erfi−1[−2π−1/2α−1β1/2 ln(1 − x)]}2

(13)

or the conversion-dependence of the activation energy for a
rst-order, heterogeneous, dispersive process. By plotting Eq.
13), using various values of α and β (as well as Eo

a and T) – not
hown here – one may observe the general shape of the Ea versus
plots, as predicted by the equation. More simply, however, one
ay use graphical arguments to show that Ea(x) can be expected

o exhibit the general characteristics of a M–B kinetic energy
istribution; i.e. an asymmetric, concave-down curve. As men-
ioned in the Introduction, this is an important goal because the
uthors’ fundamental assumption in the original development of
q. (9) was a M–B-like distribution of activation energies [8].
hus, the graphical analysis may lend support to this assumption
nd provide a level of ‘self-consistency’ [9] for the derivations
f the dispersive kinetic model equations presented herein.

In Fig. 3, typical reagent (1 − x) and product (x) fractions,
odeled as a function of t using Eq. (9), are depicted schemat-

cally. For heterogeneous conversions, these curves generally
ake on the shape of asymmetric, acceleratory sigmoids e.g.
8,9,13]. Considering only the x fraction in Fig. 3 (a), one may
pproximate the shape of the corresponding t versus x plot in (b)
y using the function t = arctanh(x), as shown in (c); note that the
anh(x) function was first proposed by Prout and Tompkins for

odeling solid-state kinetics [20]. However, as the t = arctanh(x)
unction has an inflection point at (0, 0), whereas the schematic

versus t curve has an inflection point at some location (ti, xi)

n the positive quadrant for both variables, one may choose to
arbitrarily) translate the data curves in (a) to make the inflec-
ion point coincide with the origin. Doing so, one finds that it
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ig. 3. Schematic depiction of: (a) a general heterogeneous solid-state conversio
or the system in (a); the line x = 1 is added simply to guide the reader, (c) a p
urve in (b), and (d) a plot of y = −[arctanh(x)]2, on an x, y-coordinate, as an ap

s possible to consider all x ∈ (−1 < x < 1); it also holds that as
→ ∞, x → 1 and as t → 0, x → −1. Using t = arctanh(x) (or,
ore precisely, t = [arctanh(x − xi) + ti]) in the second term on

he r.h.s. of Eq. (10), i.e. for the kinetic energy portion of Ea(t),
ne discovers the source of the non-linear behavior in Ea(x);
his is demonstrated graphically in Fig. 3(d) by the plot of the
unction, y = −[arctanh(x)]2, on an x, y-coordinate. Note that
his plot is symmetrical due to the fact that the symmetrical
rctanh(x) function was used to approximate the asymmetri-
al data in Fig. 3(a). Thus, it is not difficult to envision that
n asymmetric t(x) function would correspondingly yield an
symmetric, ‘concave-down’ Ea(x) function, much like a M–B
istribution. The authors point out, however, that the Ea(x) func-
ion may not be precisely described by Eq. (12), since even this
o-called ‘exact solution’ contains some fundamental assump-
ions, in particular, those which are introduced in defining the
ime-dependent rate constant in Eq. (4); see Ref. [8]. It may be
f interest to highlight the fact that Eq. (4) is ultimately respon-
ible for allowing the dispersive kinetic models discussed in this
ork (and in previous works) to fit asymmetric x–t sigmoids;

his can be seen by considering a general Gaussian k(t) versus t
lot, centered at the origin (not shown), and only ‘real’ values of
≥ 0: at both low and high values of t, the degree of curvature of
he plot is very different, thus introducing the desired asymmetry
o the kinetic model functions.
The authors believe that this graphical demonstration sup-
orts their standing hypothesis regarding the existence of a
M–B-like’ distribution of activation energies, in the case
f heterogeneous, dispersive conversions (i.e. those typically

f
d
d

th 1 − x(t) and x(t) trends are shown, (b) the predicted shape of the t(x) function
y = [arctanh(x)], on an x, y-coordinate; an approximation for the shape of the
mation to the shape of Ea(x) for the system described in (a).

roducing acceleratory x–t sigmoids). Such concave-down,
symmetric Ea(x) distributions have been observed experi-
entally e.g. [4,18]. Similarly, for homogeneous, dispersive

onversions (i.e. those producing deceleratory x–t sigmoids),
here one may apply the relation [9]: Ea(t) = Eo

a + RTβt2, the
a(x) function can be expected to be an asymmetric, concave-
p distribution, consistent with the experimental observations in
ome of the thermal analysis literature e.g. [21,22].

. Conclusions

Semi-empirical, ‘dispersive kinetic’ versions of some of the
raditional solid-state models may be adapted using the novel
pproach described in this work. These dispersive models are
hought to be applicable to cases in which quantized molecu-
ar kinetic energies impact the r.d.s. of the conversion (e.g. in
he solid-state, processes that are rate-limited by nucleation/de-
ucleation). Thus, they may potentially be of broad applicability;
his idea is supported both by the present work and by previous
apers by the authors. The dispersion in the activation energy,
hich is common to dispersive kinetic treatments and is funda-
entally caused by molecular motion, may help to explain the

ariation in the activation energy with conversion that has been
escribed in some recent works aimed at studying various solid-
tate conversions using isoconversional kinetic approaches.
The data for the thermal decomposition of oxacillin was
ound to be able to be fit by the heterogeneous, first-order,
ispersive kinetic model proposed by the authors, despite pro-
ucing only slightly (acceleratory) sigmoidal x–t trends. Despite
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his atypical (i.e. F1-like) appearance of the data curves (i.e.
elative to other dispersive processes that the authors have
odeled), isothermal experiments performed at multiple tem-

eratures were able to provide reasonable estimates of both
he potential (time-independent) and kinetic (time-dependent)
nergy portions of the activation energy for this conversion, indi-
ating that the model is robust. The dispersion (i.e. change) in the
ctivation energy as a function of the extent of conversion/time
as found to be small, supporting the weakly sigmoidal appear-

nce of the observed x–t trends.
Using a schematic x–t curve for a general heterogeneous,

rst-order dispersive process, coupled with the elementary math-
matical ‘fit function’, t = arctanh(x), it was possible to provide
raphical evidence to support the founding assumption of the
uthors’ dispersive kinetic models: the sigmoidal x–t trends
xhibited by typical dispersive processes are the direct result of
he existence of an asymmetric distribution of activation ener-
ies, Ea(x), which may take the functional form of the M–B
istribution.
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